ucloud server

NFS 설정 가이드

v1.1

2013. 6

1.	개 요.		4
1	1.1. Lin	ux NFS 개요	4
1	1.2. ucl	oud NFS 구성	5
2.	NFS 🗡	여버 구성	6
2	2.1. NF	S 서버 VM 생성	6
	2.1.1.	VM 생성	6
	ucloud	d Marketplace 의 상품 신청 기능을 이용하여 신규 NFS Server VM 을 생성	한다.
	•••••		6
2	2.2. 디크	스크 추가	7
	2.2.1.	디스크 생성	7
	2.2.2.	디스크 파티션 설정	7
	2.2.3.	LVM 설정	9
	2.2.4.	포맷 및 마운트	10
	2.2.5.	fstab 수정	11
ź	2.3. NF	S 서버 설정	11
	2.3.1.	exports 파일 설정	11
	2.3.2.	exports 파일 예제	11
	2.3.3.	데몬 재시작	11
ź	2.4. NF	S 서버 옵션	12
2	2.5. ⊏ <u>-</u>	스크 확장	12
	2.5.1.	디스크 추가 및 파티션	12
	2.5.2.	디스크 사이즈 변경	12
3.	NFS 클	클라이언트 설정	14
	3.1. NF	S Mount	14

목차

3.2.	NFS Mount 예제	. 14
3.3.	Mount 옵션	. 14
3.4.	자동 마운트 설정	. 14

1. 개 요

본 문서는 ucloud server 상에서 VM 기반의 NFS Server 를 구성하려는 사용자에게 제공되는 가이드 문서이다.

1.1. Linux NFS 개요

NFS(Network File System)란 리눅스 머신에서 이더넷 기반으로 동작하는 가장 기본적인 공유 파일 시스템 중의 하나로 서버 / 클라이언트 모델로 동작하는 스토리지 프로토콜이다.

그림 1. NFS 를 이용한 공유 스토리지 구성도

각 클라이언트들이 NFS 서버의 공유 폴더(Export Path)를 마운트하게 되면 자신의 로컬 파일 시스템을 사용하는 것처럼 여러 클라이언트와 파일을 공유하여 사용할 수 있다.

1.2. ucloud NFS 구성

ucloud Marketplace 의 상품 신청 기능을 이용하여 NFS Server 를 쉽고 빠르게 구성할 수 있다.

URL: https://ucloudbiz.olleh.com/portal/ktcloudportal.epc.productintro.ucloud_server_image.html

ucloud Marketpl	ace o 검색어를 입력하세요.	Q ucloud Marketplace 등록/제휴 안내 🔸				
상품소개	Storage					
Databases +	A Home → Storage					
Storage -		NFS 상품 신청				
- NFS	Linux 🔍	제공: kt ucloud 버전: - 기본 운영 체제: CentOS 5.4				
= GlusterFS Network +		NFS(Network File System)란 리눅스 머신에서 이더넷 기반으로 동작하는 가장 기본적인 공유 파일 시스템 중의 하나로 서버/클라이언트 모델로 동작하는 스토리지 프로토콜입니다.				
Big Data +	-	자세히 보기				
HPC +		GlusterFS 상품 신청				
	Linux	제공: kt ucloud 버전: - 기본 운영 체제: CentOS 5.4(64bit)				
요금계산기 미리 계산해		GlusterFS란 수천 PetaByte 급의 대용량에, 수천 개의 클라이언트가 접속하며 사용 가능한 scale-out 방식의 분산 파일 시스템입니다.				
보세요 ►		자세히 보기,				

그림 2. ucloud Marketplace 화면

생성된 NFS Server VM 은 같은 계정 내 VM 에서 접속하여 사용할 수 있다.

그림 3. ucloud NFS 시스템 구성도

2. NFS 서버 구성

2.1. NFS 서버 VM 생성

2.1.1. VM 생성

ucloud Marketplace의 상품 신청 기능을 이용하여 신규 NFS Server VM을 생성한다.

cloud server :: 서비 신청 ×								
01 운영체제 선택 02 서버 선택 03 신청 내역 확인								
			71	격				
분류	이미지명	종류	월요금제	시간요금제				
머신이미지	Centos + NFS	Centos 5.4 64bit	무료	무료				
cloud NAS	사용여구 ● 예 ○ 아	니오						
		취소 다음						

그림 4. ucloud Marketplace 에서 NFS VM 생성 화면

2.2. 디스크 추가

2.2.1. 디스크 생성

ucloud server 관리 콘솔에서 NFS Server VM 에 추가 디스크를 생성한다.

Dis	Disk 추가 신청 🛛 🗡									
	적용 서버	서버 : server01 (4784f32b-2644-47e9-8cd5-76799cc910e5)								
	스토리지 가격	10GB당 700원								
	스토리지 용량	10GB 💌								
	스토리지 명	중복체크 * 영문만 입 력 가능합니다. (총 25Bytes)								
	윌 결제 금액	700원/윌 (부가세 별도)								
		취소 신청								

그림 5. ucloud server 관리 콘솔에서 추가 디스크 신청 화면

2.2.2. 디스크 파티션 설정

추가한 디스크를 확인한다. # fdisk –l Disk /dev/xvda: 21.4 GB, 21474836480 bytes 255 heads, 63 sectors/track, 2610 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/xvda1 1 13 104391 83 Linux /dev/xvda2 14 2610 20860402+ 8e Linux LVM Disk /dev/xvdb: 85.8 GB, 85899345920 bytes // 추가 디스크 확인 255 heads, 63 sectors/track, 10443 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk /dev/xvdb doesn't contain a valid partition table

디스크 파티션을 생성한다.

fdisk /dev/xvdb Command (m for help): n // 새 파티션 생성 Command action e extended p primary partition (1-4)

p // Primary 파티션으로 선택

Partition number (1-4): 1 // 파티션 번호(1) 선택 First cylinder (1-10443, default 1): // 디스크 전체를 생성하는 파티션에 할당 Using default value 1 Last cylinder or +size or +sizeM or +sizeK (1-10443, default 10443): Using default value 10443

파티션 타입을 설정한다.

Command (m for help): t // 파티션 타입 설정 Selected partition 1 Hex code (type L to list codes): 8e // LVM 타입 선택 Changed system type of partition 1 to 8e (Linux LVM)

생성한 파티션을 확인한다.

Command (m for help): p // ·	생성한 파티쉬	년 확인					
Disk /dev/xvdb: 85.8 GB, 85899345920 bytes								
255 heads, 63 sectors/	′track, 1044	3 cylinders						
Units = cylinders of 16	5065 * 512	= 8225280 b	ytes					
Device Boot	Start	End	Blocks	Id	System			
/dev/xvdb1	1	10443	83883366	83	Linux LVM			

설정한 파티션 정보를 저장하고 종료한다.

Command (m for help): w // 파티션 정보 저장 The partition table has been altered! Calling ioctl() to re-read partition table. Syncing disks.

2.2.3. LVM 설정

디스크를 EXT3 와 같은 일반적인 리눅스 파일 시스템으로 설정해도 상관 없지만, 디스크 추가 확장이 불가능해진다.

하지만 리눅스의 LVM(Logical Volume Manager)을 이용하게 되면 볼륨 크기를 동적으로 증가시키는 것이 가능하기 때문에 추가 디스크 설정 시 LVM 을 이용하는 것이 좋다.

그림 6. LVM 구성도 (출처: http://docs.redhat.com)

PV(Physical Volume)를 생성한다.

# p\	/create	/dev/xvdb1	// PV 생성		
# p\	/s //	' PV 조회			
	PV	VG	Fmt Att	r PSize	PFree
	/dev/x\	/da2 VolGroup	000 lvm2 a	19.88G	0
	/dev/x\	/db1	lvm2 a	80.00G	80.00G

VG(Volume Group)를 생성한다.

# vgcreate Da	taVol01	/de	v/xvdb1 // VG 생성	3
# vgs // V	G 조회			
VG	#PV	#LV	#SN Attr VSize VFr	/Free
DataVol02	l 1	0	0 wzn- 80.00G 80.0).00G
VolGroup	00 1	2	0 wzn- 19.88G	0

LV(Logical Volume)를 생성한다.

# lvcreate	e –I 100%FREE	–n NFS	LV Data	aVol01 //	/ LV -	생성	
# lvs	// VG 조회						
LV	VG	Attr	LSize	Origin Sna	ар%	Move Log Copy%	Convert
NFSLV	DataVol01	-wi-a-	80.000	G			

2.2.4. 포맷 및 마운트

생성한 LV를 EXT3 파일 시스템으로 포맷한다.

mkfs.ext3 /dev/DataVol01/NFSLV // 생성한 LV 포맷
mke2fs 1.39 (29-May-2006)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
10485760 inodes, 20970496 blocks
1048524 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
640 block groups
32768 blocks per group, 32768 fragments per group
16384 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 31 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

포맷한 볼륨을 NFS Server VM 에 마운트 한다.

 # mkdir /data
 // 추가 디스크를 마운트할 /data 디렉토리 생성

 # mount /dev/DataVol01/NFSLV /data
 // 볼륨 마운트

2.2.5. fstab 수정

NFS Server VM 이 재부팅 되더라도 추가한 디스크가 자동으로 마운트 되도록 /etc/fstab 파일에 다음 내용을 추가한다.

/dev/DataVol01/NFSLV /data ext3 defaults 1 1

2.3. NFS 서버 설정

2.3.1. exports 파일 설정

/etc/exports 파일을 이용하여 NFS 서버 설정을 할 수 있다.

vi /etc/exports

2.3.2. exports 파일 예제

예제 1) 1 개 이상의 웹 서버에서 읽기 전용의 이미지 파일을 공유하여 사용하기

위한 NFS 서버 구성

/var/www/img *(ro,all_squash)

예제 2) 읽기/쓰기가 빈번하게 일어나는 미디어 파일을 서로 공유하여 사용하기 위한 NFS 서버 구성

/data 172.27.0.0/16(rw,no_root_squash)

2.3.3. 데몬 재시작

위의 exports 파일 설정이 완료되면 NFS 데몬을 재시작하여 설정을 적용한다.

#service nfs restart

2.4. NFS 서버 옵션

exports 파일 설정 시 다음 옵션을 이용하여 다양한 환경을 구성할 수 있다.

옵션	설명				
ro	읽기 전용으로 공유한다. (<mark>기본</mark>)				
rw	읽기/쓰기 모드로 공유한다.				
root_squash	클라이언트의 root를 익명 사용자(nobody)로 매핑한다. (기본)				
no_root_squash	클라이언트의 root 를 서버의 root 로 매핑한다.				
all_squash	모든 사용자를 익명 사용자(nobody)로 매핑한다.				
sync	클라이언트와 서버간 동기적 통신을 한다. (기본 , 안전성 향상)				
async	클라이언트와 서버간 비동기 통신을 한다. (속도 향상)				
	마운트 요청 시 포트를 1024 이하로 한다. (1024 이하 포트는				
secure	root 만 설정 가능, <mark>기본</mark>)				
insecure	마운트 요청 시 1024 포트 이상도 허용한다.				

2.5. 디스크 확장

만약 기존에 쓰던 디스크의 여유 공간이 부족해 디스크 확장이 필요한 경우 다음 절차를 통해 디스크 크기를 증가시킬 수 있다.

2.5.1. 디스크 추가 및 파티션

먼저 ucloud server 관리 콘솔에서 추가 디스크를 신청 후 LVM 방식으로 파티션을 선언한다. (문서 내 2.2.1 / 2.2.2 참조)

2.5.2. 디스크 사이즈 변경

새롭게 추가 된 디스크를 PV로 생성한다.

pvcreate /dev/xvdc1 // PV 생성 # pvs // PV 조회 PV VG Fmt Attr PSize PFree /dev/xvda2 VolGroup00 lvm2 a-- 19.88G 0 /dev/xvdb1 DataVol01 lvm2 a-- 80.00G 0 /dev/xvdc1 lvm2 a-- 80.00G 80.00G

기존에 사용하던 VG에 새롭게 생성한 PV를 추가시킨다.

# vgexte	nd DataVol01 /dev/xvdc1	// VG	∥ PV 추가
# vgs	// VG 조회		
VG	#PV #LV #SN Attr	VSize	VFree

DataVol01	2	1	0 wzn- 159.99G 80	00G
VolGroup00	1	2	0 wzn- 19.88G	0

VG 크기가 증가한 것을 확인할 수 있다.

NFS 데몬을 중지시키고, NFS 서버에 마운트된 볼륨을 언마운트 시킨다.

# service nfs stop	// NFS 데몬 정지
# umount /data	// 볼륨 언마운트

LV 크기를 변경한다.

lvextend -L+80G /dev/DataVol01/NFSLV

EXT3 파일 시스템의 크기도 증가 시킨다.

# e2fsck -f /dev/DataVol01/NFSLV	// 변경된 파일 시스템 체크
# resize2fs /dev/DataVol01/NFSLV	// 파일 시스템 크기 변경

사이즈가 변경된 볼륨을 다시 마운트 후 NFS 데몬을 시작한다.

mount /dev/DataVol01/NFSLV /data // 볼륨 마운트 # service nfs start // NFS 데몬 시작

3. NFS 클라이언트 설정

3.1. NFS Mount

서버에서의 설정이 끝나면 클라이언트에서는 서버에서 exports 한 NFS Path 를 마운트 할 수 있다.

#mount -t nfs <nfs_server_ip>:<mount_path> <mount_point> -o <options>

3.2. NFS Mount 예제

IP 가 172.27.0.5 인 NFS 서버의 /data 를 읽기 전용으로 마운트 하는 방법

mount -t nfs 172.27.0.5:/data /mnt -o soft,retrans=10

3.3. Mount 옵션

클라이언트가 NFS Mount 시에 사용되는 옵션이다.

옵션	설명
rsize=n	NFS 서버로부터 읽어오는 바이트 수를 지정한다.(기본 1024)
wsize=n	NFS 서버로 쓰기를 할 때 사용하는 바이트 수를 지정한다. (기본 1024)
timeo=n	타임 아웃이 발생 후 재전송 간격
retrans=n	타임 아웃 발생 시 재전송 시도 횟수 (<mark>기본 3</mark>)
port-p	NFS 서버와 연결할 때 포트번호 지정, 기본적으론 NFS 서버와 질의 후
port=n	설정한다.
fg	첫번 째 마운트 시도 시 타임 아웃되면 바로 중단한다.(<mark>기본</mark>)
ha	첫번 째 마운트 시도 시 타임 아웃이 되더라도 백그라운드에서 계속
by	마운트 시도를 한다.
bard	서버가 응답할 때까지 계속 마운트를 시도하며, 응답이 없는 경우에도
naru	umount 명령으로 마운트를 취소할 수 없다.(<mark>기본</mark>)
coft	타임 아웃 발생 시 retrains 값만큼만 재전송을 시도한다.
SOIL	umout 명령을 통해 마운트를 취소할 수도 있다.

3.4. 자동 마운트 설정

클라이언트가 재부팅이 되더라도 자동으로 마운트 되도록 하기 위해서는 /etc/fstab 에 다음 설정을 추가한다.

|--|